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Machine Learning in Updating Predictive
Models of Planning and Scheduling
Transportation Projects

LiYE ZHANG AND W. M. KiM RODDIS

A method combining machine learning and regression analysis to auto- Predictive models are mathematical relations. Manually updating
matically and intelligently update predictive models used in the Kansaspredictive models is theoretically possible but practically infeasible
Department of Transportation’s (KDOT's) internal management system pacquse of the complexity of this real-world engineering problem.
is presented. The predictive models used by KDOT consist of planningIt not onlv uses both numeric and svmbolic data tvpes. but also is
factors (mathematical functions) and base quantities (constants). The "~ ° Y U y 1a types,
duration of a functional unit (defined as a subactivity) is determined by Multidimensional and nonhomogeneous. This paper presents a
the product of a planning factor and its base quantity. The availability of Method combining machine learning and regression analysis to
a large data base on projects executed over the past decade provided tagitomatically and intelligently update predictive models used in
opportunity to develop an automated process updating predictive mod-determining the durations of transportation projects.

els based on extracting information from historical data through machine First, this paper briefly outlines the method of planning and

learning. To perform the entire task of updating the predictive models, o -, o ,jing transportation projects. Second, it discusses the predic-
the learning process consists of three stages. The first stage derives th ' '

numerical relationship between the duration of a functional unit and the ve models tq be updated. Then, following _a_brlef reV'_eW of th_e
project attributes recorded in the data base. The second stage findgachine learning methods, the method combining machine learning
the functional units with similar behavior—that is, identifies functional and regression analysis is presented. Finally, the performance of the
units that can be described by the same shared planning factor scaled iRFactor system, built using this method, is given.

terms of their own base quantities. The third stage generates new plan-

ning factors and base quantities. A system called PFactor built on the

basis _of the thr?e-stage_learning process shows good performance i'ﬂ’LANNING AND SCHEDULING

updating KDOT'’s predictive models.

The Kansas Department of Transportation (KDOT) manages many

Planning and scheduling transportation projects is an interesting andypes of transportation projects. Generic planning templates are
important subarea of transportation engineering. Construction proj-available for typical project types such as bridge replacement, new
ect planning and scheduling can be viewed in two stages. The firstoad construction, and pavement overlay. To plan and schedule a
stage involves planning and scheduling of project development andiransportation project in its management network, KDOT follows
engineering, a task that is typically the responsibility of transporta- the steps shown in Figure 1.
tion agencies. This stage deals with planning and scheduling project For a new transportation project, the project statement is given
preparation going on in the agency itself before release of the proj-to a planner. First, the planner analyzes the transportation project
ect for bid. It stresses the allocation of resources within the agencyaccording to its project statement, identifying all activities that
The second stage involves planning and scheduling of project exemust be performed in order to complete the project. The planner
cution and construction, a task that is typically the responsibility of chooses a generic template that most closely matches the project
the contractors. This paper deals with the first stage of planning andype, establishing an activity network for the project. Next, the
scheduling transportation projects. duration of each activity in the project is estimated according to the

The accuracy of predicting duration required by activities of a predictive models stored in the management system. Finally, a
project will influence to a great extent the effectiveness of planning complete plan and schedule are generated either by forward or
and scheduling the project because failure to manage time properlypackward pass calculatiof)(
will result in schedule slippage and cost overruns. But most predic-  For a typical template, an activity network flow chart is used and
tive models of activity duration for planning and scheduling of the critical path methodl) is adopted. Figure 2 shows the activity
transportation projects by state departments of transportation arenetwork flow chart of a generic template suitable for a simple bridge
based on experience in a relatively ad hoc manner and often do noteplacement project.
accurately reflect the agency’s current business practices and The basic parts of the management network for a projeataatke
requirements. Establishing new predictive models for activity dura- phasesevents andactivities Work phases are made up of events
tion in order to improve planning and scheduling is of concern to and activities. Events are either milestones or border check points
state departments of transportation. (less-significant milestones). The components of the management
network are shown in Figure 2. For instance, the utility work phase
comprises the events of UTILP (utility plans), UTAGR (utility
agreement complete), and UTCOM (utility adjustment complete),

Department of Civil Engineering, University of Kansas, Lawrence, Kan. and the activities of UTENG (utility engineering) and UTADJ (util-
66044, ity adjustments). The milestones and border check points are the
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FIGURE 1 Process of managing a project.

beginning or ending of an activity and mark a particular pointin  * What attributes influence the duration of the particular func-
time for reference or measurement. They do not take any elapsedional unit? That is, what attributes are the significant independent
time in planning and scheduling. attributes on which the duration of the functional unit depends? Dif-

Activities are associated with time, and time is their important ferent functional units may have different significant attributes.
factor. An activity can start when all predecessors to that activity are * How do the attributes determine the duration of the particular
complete. For example, the activity of PS&E (plans, specification, functional unit? That is, what is the numerical relationship be-
and estimates) in Figure 2 can start only when its predecessors ofween the significant attributes and the dependent duration of the
UTADJ (utility adjustments), FIDES (final design), and RWCDM functional unit?

(right-of-way condemnation) are finished.

An activity consists of subactivities calléanctional units As KDOT manages many transportation projects of a variety of
indicated in Table 1, the activity of DSSUR (design surveys) types. Many templates are stored in the management system to
includes the functional units of FSURV (field survey), DESUP classify the various projects. There are hundreds of project type
(design support), DMATL (district materials), and MATLS (mate- associated functional units in the management system. Individu-
rials). The functional units of an activity can be performed at ally predicting the duration of each functional unit would lead
the same time, and their durations may be different. Therefore, theto an excessive number of models. However, engineers in KDOT
duration of an activity is determined by the functional unit whose observed that some functional units behave similarly, with dura-
duration is the longest. The total duration of a project is determinedtions differing only by a constant; that is, those functional units
by the summation of the time taken by the activities on critical path have the same significant attributes and those significant attrib-
(1). The critical path is defined as the longest continuous chain utes influence the duration in the same way except for magnitude.
of activities through the network schedule that establishes theThis can be accounted for in the predictive model by splitting the
minimum overall project duration. duration of a particular functional unit into two parBsandp,

It is clear that the more accurate the duration prediction of func- with the duration of the functional unit measured by the product
tional units, the more accurate the duration prediction of activities. of B andp.

Consequently, improved duration prediction results in more effective
planning and scheduling. d=Bxp (2)

whereB is a constant related to the functional unit and independent
PREDICTIVE MODELS of the attributes, andis a function of the significant attributds.

andp are called dase quantitynd gplanning factor respectively,
The duration of functional units of a project strongly depends on thein KDOT's planning and scheduling management system. In other
attributes of the project. (The approach described does not explicwords, predictive models consist of planning factors and base quan-
itly consider the interplay between cost and duration, reflecting tities. The duration of functional units is proportional to their corre-
KDOT practice. Further work addresses this issue but is beyond thesponding planning factors with the base quantities as the constants
scope of this paper.) The attributes of a project include road length,of proportionality.
number of lanes and bridges, and location of a project. The attrib- The introduction of planning factors in KDOT'’s planning and
utes used in describing a project in KDOT's data base system arescheduling system allows the system to predict the duration of many
given in Table 2, which indicates that a project has many attributesfunctional units in terms of a small number of planning factors.
and that the attributes are of mixed types—that is, both symbolic andSome functional units even in different templates may share the
numeric. In terms of project attributes, the duration of a functional same planning factor by having their own base quantities.

unit can be described as The preceding description applies to the predictive models in use
at KDOT. However, these models have become outdated and no

d = f{attributeg (@) longer accurately reflect the agency’s current business practices and
requirements. There is thus a need to update the predictive models.

whered denotes the duration of the functional unit, &isda math- A large data base of planning and scheduling information is avail-

ematical function of attributes. However, instead of all attributes in able on projects executed over the past decade. It would be useful for
Table 2, in general, only several of those attributes influence a parKDOT to have an automated method of updating the predictive mod-
ticular functional unit. To establish the predictive model for the els on the basis of historical data. Such an automated approach could
duration of a particular functional unit, the experts in planning and then be used continuously to incorporate information contained in
scheduling, drawing on their experiences, determine the following: recent additions to the data base.
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TABLE 1 Functional Units Contained in Activities in Template of 3R/Bridge Replacement

Activities Functional Units
START START
DSSUR FSURV (FIELD SURVEY)
(DESIGN SURVEY) DESUP (DESIGN SUPPORT)
DMATL (DISTRICT MATERIALS)
MATLS (MATERIALS)
PREDES BRIDG (BRIDGES)
(PRELIMINARY DESIGN) ENVIR (ENVIRONMENTAL)
GEOL (GEOLOGY)
PVMNT (PAVEMENT)
SOILS (SOILS)
ROAD (ROAD DESIGN)
FIDES BRIDG (BRIDGES)
(FINAL DESIGN) TRCO (TRAFFIC CONTROL)
ENVIR (ENVIRONMENTAL)
GEOL (GEOLOGY)
LANDS (LANDSCAPE)
PVMT (PAVEMENT)
ROAD (ROAD DESIGN)
SIGNS (SIGNING)
SOILS (SOILS)
RWENG RWENG (RIGHT OF WAY ENGINEERING)
(RIGHT OF WAY ENGINEERING)
RWAPP RWAPP (RIGHT OF WAY APPRAISAL)
(RIGHT OF WAY APPRAISAL) CONOF (CONSTRUCTION OFFICE)
RWNEG CONOF (CONSTRUCTION OFFICE)

(RIGHT OF WAY NEGOTIATIONS)

RWACQ (RIGHT OF WAY ACQUISITIONS)
RQMGT (RIGHT OF WAY MANAGEMENT)
RWREL (RIGHT OF WAY RELOCATIONS)

RWCDM LEGAL (LEGAL)

(RIGHT OF WAY CONDEMNATION)

UTENG UTIL (UTILITIES)

(UTILITY ENGINEERING) CONOF (CONSTRUCTION OFFICE)
UTADJ CONOF (CONSTRUCTION OFFICE)
(UTILITY ADJUSTMENT)

THREE-STAGE PROCESS OF UPDATING
PREDICTIVE MODELS

The most difficult part of updating predictive models is the first
stage, that is, finding the numerical relations between the functional
unit duration and its significant attributes. The difficulties come
To allow the updated predictive models to be integrated easily with from the following characteristics of the problem:
KDOT's existing planning and scheduling system, it is preferred
that the format of predictive models remain unchanged, which 1. Attributes are of mixed types, symbolic and numeric.
means keeping predictive models in the same form of planning 2. The numerical relations between duration and attributes are
factors and base quantities. multidimensional and nonhomogeneous: different relationships
The analysis described in this paper is limited to linear estimates,hold in different subsets of the data set of the functional unit, which
reflecting KDOT practice. This limitation prevents the use of expo- are expressed as region-equation pairs
nential forms used in many areas of construction to reflect scale
economies (or diseconomies). Current research is under way toR : d = f{attributeg 3)
allow other than linear forms, but that work is beyond the scope of
this paper. where
Each model is constructed to predict the duration of a functional
unit. Therefore, the updating process begins at the level of functional
units. The updating process consists of the following three stages:

i = region number,
R = description of regioin, and
f, = numerical relation of region

* Analyzing the data set of each functional unit,
* Grouping functional units with similar behavior, and
* Generating new planning factors and base quantities.

To ensure that the updated models are in a form that is clear to the
users, the data analysis is guided by knowledge specific to the plan-
ning and scheduling problem area. This domain knowledge is
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TABLE 2 Attributes Related to Planning Factors
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ATTRIBUTE NAME ATTRIBUTE VALUES TYPE
Access indicator Controlled or Uncontrolled Symbolic
Borrow Yes or No Symbolic
Bridges The number of bridges Numeric
Bridge replacement The number of bridge replacements Numeric
Bridge width Numeric Numeric
Bridge length Numeric Numeric
Construction under traffic ~ Yes or No Symbolic
Crossing Small, Medium, Large Symbolic
Design In-House or Consultant Symbolic
Distance Travel miles from Topeka Numeric
FHWA improvement type  Integer indicating different types Symbolic
Lanes Two, Four or Six Symbolic
Length Numeric Numeric
Light tower The number of light tower required Numeric
Location study Major, No-major Symbolic
Location construct New or Existing Symbolic
Metro Normal or High Symbolic
Places Kansas City, Wichita, Topeka or Others Symbolic
Relocation Yes or No Symbolic
Sign footing The number of sign footings required Numeric
Sign project New or Modified Symbolic
Sign truss Yes or No Symbolic
Surface work type Grading & surfacing , Grading or Surfacing Symbolic
Surface material Bituminous or Concrete Symbolic
Time Time of letting: Jan., Feb.,..., Dec. Symbolic
Tracts The number of tracts to be purchased Numeric
Tracts relocated The number of relocated tracts in negotiation Numeric

Tracts condemned The number of relocated tracts in condemnation Numeric

Urban indicator Urban or Rural Symbolic
US81 indicator East or West Symbolic
US283 indicator East or West Symbolic
Utilities The number of utilities Numeric

Utilities relocation required  Yes or No Symbolic

derived largely from the existing models, which encode the exper- Characteristic 3 just given). It requires variables of one type
tise of planners and schedulers. The important restrictions used in(unlike Characteristic 1), and also requires that the numerical rela-
guiding the data analysis includ& the function describing each  tions be homogeneous, that is, the same relationship is true over
region is limited to linear functions as discussed at the beginning ofthe entire domain (unlike Characteristic 2).
this section, andbj region boundaries are solely dependent on In addition, the second and third stages of updating predictive
symbolic attributes. Therefore, the expected forms of numerical models are time-consuming and computationally expensive because
relationships can be expressed by of the large number of functional units. Manually updating predic-
tive models is theoretically possible but practically infeasible. For

R:d=c¢,+ca+ca+...+Ga, (4 these reasons, the approach combining machine learning and regres:
sion analysis is applied to update predictive models intelligently and
whereay, &, . . . ,ayare numerical attributes; anog ¢, G,, . . . ,Ci, automatically.

are region-related constants. Different regions may have different
significant attributes.
3. Significant attributes are unknown before data analysis. That COMBINATION OF MACHINE LEARNING
is, it is unknown before data analysis what symbolic attributes AND REGRESSION ANALYSIS
should be used in region descriptions and what numerical attri-
butes should be used in numerical equations. When many attrib-Machine learning is the subfield of artificial intelligence con-
utes are present, choosing the most significant attributes is acerned with the design of automatic procedures able to learn from
computationally intensive task, even if a linear function of the training cases. Since the early 1950s when Tur)gpfoposed
significant attributes in each region is required. this application for computers, machine learning from examples
has been an area of researgh §ince the 1980s, machine learn-
These problem characteristics preclude a straightforward appli-ing has made substantial progress, and various machine learning
cation of traditional statistical regression analysis. Traditional sta- methods have been proposed. They can be classified into five
tistical regression analysis must assume a model a priori (unlikeparadigms.
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The first paradigm uses decision rules, decision trees, or similarematical functions. To reach these two goals, a three-stage learning
knowledge representations. One of the successful algorithms in thisalgorithm is used.
paradigm is a tree-based method named C4.5 developed by Quinlan The first-stage learning process is to find the relationship between
(4). A limitation of these methods is their requirement of discrete duration and attributes. Because of the difficulties mentioned
values for attributes. When the predicted decision is in the form of before, the algorithm combines machine learning techniques and
ordered continuous numeric values instead of finite classes, the prostatistical analysis to complete the learning efficiently.
posed algorithms include CART (constructing regression trees) and  This algorithm uses a tree-based model (called M-model tree) as
M5 (generating model trees),6). its knowledge representation of region-equation pairs. This knowl-
The second paradigm is case-based or instance-based learningdge representation fits the application domain and is able to
Rather than extracting from the examples some abstract such agescribe clearly hidden relationships as shown in Figure 3. Region
trees and storing this structure in memory, these methods storejescriptions are expressed by the nodes and arcs of the tree. Regiona
instances or cases in memory, and classify unseen cases by referringmerical relationships are expressed by the linear equations in the
to similar remembered cases. The group contains methods such agee |eaves.
nearest-neighbor algorithmg)( k-nearest-neighbor algorithme)( The algorithm starts by dividing the data set into training and test-

and average-case analys ( ing sets. The training s&is used for building an M-model tree. The
The third paradigm is neural networks. They represent knowledge egting set is used for assessing the M-model tree and controlling
as a multilayer network of threshold units that spreads activation pruning.

from input nodes through internal units to output nodes. Therefore, The first step of building an M-model tree is to compute the

_the knowledge, such as mathematical function_s, hidden in the datastandard-deviationl(?) of the target values of the casedithat is
IS r.IOt explicitly represe_nteq. A comprehensive presentation of treated as a measure of error. Unlessntains very few cases or its
various neural networks is given by Langley and R ( measure of error is less than a threshbid, split into two or more

The fourth parad|gm IS genetic glgorlthms, .Wh'Ch yvas derived subsetdT; on the basis of one of the symbolic attributes in order to
from the evolutionary model of learnin@yl). Genetic algorithms use L .
make the training cases in the subsets more homogeneous. The

the Darwinian principle of “survival of the fittest.” A genetic classi- o . .
fier is composed of a set of classification elements that replicate an&ntenon o select an attribute as a node of the M-model tree is
mutate to form new generations. The more successful elements proz_evaluated by the expected error reductib)(
duce variants of themselves and proliferate, whereas elements per- T
forming poorly are discarded. BEAGLEs outlined elsewhktgdre Aerror = SD(T) - yT D(T) ®)
the example systems in this group. o o
These four paradigms typically attempt to improve the accuracy whereSD(T) denotes the standard deV|at|on o'f the set of training
of classification and prediction. The fifth paradigm concerns C@S€T, andSD(Ti) denotes the standard deviation of the subset of
numeric law discovery. Systems such as ABACUS) @nd IDS training caseg;. The algorithm uses a greedy search to choose the
(13) were developed from the BACON algorithal), which was symbolic attribute that maximizes the expected error reduction.
designed to discover scientific laws on the basis of empirical dataThiS pProcess is repeated on the subsets until either every subset
evidence. BACON systems attempt to find an invariant based on thecontains few cases or the error measure is less than a threshold.
variables given as input in order to build the model iteratively. But Only symbolic attributes not used before can be selected for the
the BACONSs appear better able to explain historical laws with arti- current node.
ficial data than to discover new ones. A critical review of these  Multivariate linear models are constructed for the cases at each
methods can be found elsewhet8)( Another system, KEPLER,  node of the M-model tree, using standard regression analysis (
was suggested by Wu and War@)( These systems are domain- However, instead of using all numeric attributes in the standard
independent but have requirements for data bases such as small sizegression analysis of each node, the numeric attributes used in the
free of noise, and one function covering whole domain space. equation of a node are restricted to the numeric attributes inherited
The particular task at hand of updating predictive models stressegrom its parent node.
not only the improvement of prediction accuracy for new cases, but After each linear model is obtained, it is simplified by eliminat-
also the explicit representation of knowledge hidden in data as mathing numeric attributes to minimize its weighted standard deviation.

ifA=A /andB=B,and D=D,, d=fi
ifA=A,andB=B,and D=D,, d=f:
ifA=A andB=B,, d=1f3
ifA=A,andC=C,, d=fs
ifA=A,andC=C,, d=fs
ifA=A,andC=C,, d=fe

FIGURE 3 Tree representation of region-equation pairs.
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Weighted standard deviation of a node is defin@l(&sT) SD(T)) * The ratios of the proportionality of equations are constant,
after a symbolic attribute is selected for the node. This algorithm that is,
uses a greedy search to remove attributes whose elimination

decreases the weighted standard deviation. In some cases, the alge; = e, = g; = constant )
rithm may remove all numeric variables, leaving only a constant at
the leaf. The third stage of learning divides the trees in groups on the basis

In the process of building the M-model tree, only training cases of their similarities. For each group, one tree is selected as the pri-
are used. Testing cases are used to prune the M-model tree in ordenary tree. The ratiB of a tree to the primary tree is the base quan-
to simplify the tree to give better prediction without overfitting. tity for the functional unit corresponding to the tree. The planning
Each nonleaf node of the model tree is examined, starting just abovéactor for the group is the average of the trees divided by their
the leaves after the M-model tree is built up. The algorithm choosescorresponding base quantities.
as the final model for this node either the simplified linear model or
the model subtree, depending on which has the lower error estimate
on the testing data. If the linear model is chosen, the subtree at thi$ Y STEM PERFORMANCE
node is pruned to a leaf.

The algorithm just described is applied to all subdata bases of funcUsing the algorithm discussed previously, a system called PFactor
tional units. The completed first stage generates a forest consisting ofas been implemented. The performance of the system is discussed
M-model trees as shown in Figure 4. here using two example cases, one consisting of an artificial data set

In the second stage of learning, the M-model trees are comparednd one consisting of an actual engineering data set.
to figure out which trees are similar so that their corresponding func-  The first case simulates the real project data base with the data

tional unit can be described by the same planning factors. Two treeVilt from known functions with a known noise level. The case is
are similar if used to show PFactor’s whole learning process deriving planning

factors and base quantities from data. This data set is divided into
* The tree structures are the same: if, tree leaves are in one-to-onthree subdata sets, each of which consists of 200 examples. Every
correspondence, the attributes used in corresponding nodes are thexample has 10 independent variabdgs . . , ;0 and one depen-
same, and the attribute values in the corresponding arcs are the saméent variablg. The data were generated from the following models
* The numeric equations in corresponding leaves are propor-by Matlab:
tional, that is (see Figure 3) Takex, ..., % symbolic independent attributes. The discrete
values of these attributes are distributed evenly, that is,

Eq 21 _
Eq 11
Eg:zz P(x =Y) =P(x =N) =12
=6 P(x, =T) =P(x, =F) =12
Eq 12 P(xs = E) = P(x; = W) =1/2
Fa 23 _ ® P =R=P(x=9 =Px=T)=U3
Eq 34 P(xs = A) = P(x; = B) = P(x; = C) = 1/3 (8)
subdatabase 1 Eq_13
Eq 11 Eq_12
/ subdatabase 2 Eq_23
DataBase Eq_21 Eq_22

subdatabase n

Eq_nl Eq_n2 Eq_n3 Eq_n4

FIGURE 4 Results of first stage of learning process.
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Takexs, . .

., X0 NUMeric independent attributes that have values functional unit. In this case, nine independent attributes are left. Five

in the range of 0 to 1. L&, introduced noise, be independenkof of the attributes are symbolic, and four are numeric:

X, « - -, X0 @nd normally distributed with mean 0 and variance 2.
Then the first subdata set implies Symbolic:[US_81] Ilanes) Wrban_ind) andUtil_relocO
Numeric: [length] Bridged) [Tractd] [Tracts_condem and
if x, =Yandx, =T, sety = 5+ 8xs +20%;, + Z (Tracts_relo€l
if x, =Yandx, = F, sety = 6+ 4x; +10x, + Z
if x =N, sety =5+8x; +Z (9) PFactor generates the tree as shown in Figure 5. The tree shows
that only two symbolic attributes and two numeric attributes sig-
The second subdata set implies nificantly affect the duration. The significant symbolic attributes
are selected by the error reduction, and the insignificant numeric
if x, =Yandx, = T, sety = 10 + 16x, + 40X, attributes are eliminated by the weighted standard deviation.
+Z=2(5+8x, +20%,) +Z The tree is generated as follows. At the root node, PFactor cal-
if , =Yandx, = F, sety =12+ 8x, + 20x, culates the error reduction of all symbolic attributes. It finds that the
+ Z =2(6+4x, +10x;) + Z attribute{Util_relocCyives the maximum error reduction, therefore
if x =N, sety =10 + 16xs the attributelUtil_reloclis used in the root node. Next, the algo-
+Z=205+8%)+Z (10 rithm calculates the weighted standard deviation and finds that no
numerical attributes reduce the weighted standard, so no numerical
The third subdata set implies attributes are eliminated. All numerical attributes will be used in its
child nodes. For the No branch @ftil_relocl] PFactor again cal-
if x, =Yandx, =T, sety =8+ 6% +14x, + Z culates the error reduction of all remaining symbolic attributes and
if x, =Yandx, = F, sety = 8 +10x; +15%, + Z selectdUS81_indJ At the noddWUS81_ind) the algorithm calcu-
if x =N, sety =12+ 7 (11) lates the weighted standard deviation and finds that the attributes

Bridged][Tracts_condefjandTracts_reloCEreduce the weighted

The first two subdata sets behave similarly. They can be describecstandard deviation, so those attributes are eliminated and only the
by the same region-equation pairs. If the equations of the first sub-attributesLengttiland (TractdJare used in its child nodes. At the
data set are selected, the second subdata set should be describedlpgaf level, no weighted standard deviation can be obtained, so
the first model multiplied by the constant 2. The output results shownumerical attributes are further eliminated only when their elimi-

if x, = Yandx,

if %

that there are two planning factors. The first planning factor is nation does not significantly influence the standard deviation. For
example, on the brandlS81_ind=East, the algorithm finds that
=T, pf = 451 + 8.06x, + 19.82x, eliminating the attributéTractslinfluences the standard deviation
Yandx, = F, pf = 5.76 + 4.03%, + 9.55%, within a preset threshold of 15 percent, therefore the attribute
N, pf = 5.37 + 7.38x, (12) Tractds eliminated and only the attribuiieengtiiemains. This

if x;

The second planning factor is

if X,
if x,
if %

model tree does not continue growing beyond this point because the
remaining symbolic attributé&ane$andUtil_reloc[do not have
enough examples in one of their branches to allow further splitting.
The other branches are grown down to leaves in a similar manner.

i?g X = IT: p}‘ = ggg : gi?xﬁ :%5?257,)(7 PFactor also tries to prune the tree, but in this case the results show
N X =5 Bf ;12 00 % X% (13) that it is unnecessary. According to the tree in Figure 5, the derived

new planning factor is

wherepf stands foplanning factor The first subset can be described if (Util_reloc) = No and (USBL_ind) = East

by planning factor 1 and base quantity 1; the second subset can be
described by planning factor 1 and base quantity 2.10; the third sub-,
set can be described by planning factor 2 and base quantity 1. Those
are the results one would expect.

pf =83.89 +7.19* (Length)
if (Util_reloc) = No and (US81_ind) = West,
pf = 66.75+8.75* (Length)

The second case is a real engineering data set. This case is usdffUtil_reloc) = Yes,

to show that the updated predictive models generated by PFactor pf =77.33+4.64* (Tracts_condemned)
provide better duration prediction than the existing models. The per-

formance of duration prediction is measured by the percentage devi-

ation, which is defined as the average over the testing cases of the

ratio of the residual to the target duration value. <Util_reloc>
To simplify this case, the data set was selected to modify only V Yes
planning factor No. 18. The data set consists of 179 examples of
functional unit RWAPP (right-of-way appraisal) from three project <USB1_ind>
templates. The existing models for duration prediction use the plan- pi=77.33+4.64*<Tracts_condemned>
ning factor No. 18 and base quantities (equal to 10) for this func- East West

tional unit in the templates. Therefore, only one model tree and one

base quantity shoulld be generated. Whgn thel data set is generat%q:mﬁg”.19*<Length> pf=66.75+8.75*<Length>

from the master project data base, domain engineers use the domain

knowledge to exclude the attributes irrelevant to duration of the FIGURE 5 Tree structure of planning factor in second example.
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